Spreading speeds as slowest wave speeds for cooperative systems.
نویسندگان
چکیده
It is well known that in many scalar models for the spread of a fitter phenotype or species into the territory of a less fit one, the asymptotic spreading speed can be characterized as the lowest speed of a suitable family of traveling waves of the model. Despite a general belief that multi-species (vector) models have the same property, we are unaware of any proof to support this belief. The present work establishes this result for a class of multi-species model of a kind studied by Lui [Biological growth and spread modeled by systems of recursions. I: Mathematical theory, Math. Biosci. 93 (1989) 269] and generalized by the authors [Weinberger et al., Analysis of the linear conjecture for spread in cooperative models, J. Math. Biol. 45 (2002) 183; Lewis et al., Spreading speeds and the linear conjecture for two-species competition models, J. Math. Biol. 45 (2002) 219]. Lui showed the existence of a single spreading speed c(*) for all species. For the systems in the two aforementioned studies by the authors, which include related continuous-time models such as reaction-diffusion systems, as well as some standard competition models, it sometimes happens that different species spread at different rates, so that there are a slowest speed c(*) and a fastest speed c(f)(*). It is shown here that, for a large class of such multi-species systems, the slowest spreading speed c(*) is always characterized as the slowest speed of a class of traveling wave solutions.
منابع مشابه
Spreading Speeds and Traveling Wave Solutions in Cooperative Integral-differential Systems
We study a cooperative system of integro-differential equations. It is shown that the system in general has multiple spreading speeds, and when the linear determinacy conditions are satisfied all the spreading speeds are the same and equal to the spreading speed of the linearized system. The existence of traveling wave solutions is established via integral systems. It is shown that when the lin...
متن کاملSpreading Speeds and Traveling Waves for Non-cooperative Reaction-Diffusion Systems
Much has been studied on the spreading speed and traveling wave solutions for cooperative reaction–diffusion systems. In this paper, we shall establish the spreading speed for a large class of non-cooperative reaction–diffusion systems and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. Our results are applied to a partially cooperativ...
متن کاملSpreading speeds and traveling waves for a model of epidermal wound healing
In this paper, we shall establish the spreading speed and existence of traveling waves for a non-cooperative system arising from epidermal wound healing and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. Our results on the spreading speed and traveling waves can also be applied to a large class of non-cooperative reaction-diffusion sy...
متن کاملSpreading Speeds and Traveling Waves for Non-cooperative Integro-difference Systems.
The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooper...
متن کاملMonotone Wavefronts for Partially Degenerate Reaction-Diffusion Systems
This paper is devoted to the study of monotone wavefronts for cooperative and partially degenerate reaction-diffusion systems. The existence of monostable wavefronts is established via the vector-valued upper and lower solutions method. It turns out that the minimal wave speed of monostable wavefronts coincides with the spreading speed. The existence of bistable wavefronts is obtained by the va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 196 1 شماره
صفحات -
تاریخ انتشار 2005